A Data Acquisition System to Detect Bubble Collapse Time and Pressure Losses in Water Cavitation

نویسندگان

  • Maria Grazia De Giorgi
  • Antonio Ficarella
  • M. Tarantino
چکیده

This paper presents a data acquisition system oriented to detect bubble collapse time and pressure losses in water cavitation in an internal orifice. An experimental campaign on a cavitating flow of water through an orifice has been performed to analyze the flow behavior at different pressures and temperatures. The experiments were based on visual observations and pressure fluctuations frequency analysis. Comparing the visual observations and the spectral analysis of the pressure signals, it is evident that the behavior of the different cavitating flows can be correlated to the frequency spectrum of the upstream, downstream and differential pressure fluctuations. The further reduction of the cavitation number and the consequent increase in the width of the cavitating area are related to a corresponding significant increase of the amplitude of typical frequency components. The spectrogram analysis of the pressure signals leads to the evaluation of the bubble collapse time, also compared with the numerical results calculated by the Rayleigh–Plesset equation. A Data Acquisition System to Detect Bubble Collapse Time and Pressure Losses in Water Cavitation

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of pressure gradient on the collapse of cavitation bubbles in normal and reduced gravity

When water flows through hydraulic turbomachines, the local pressure can become low enough to vaporize the water and create vapor cavities. This phenomenon is called cavitation. When the cavities collapse, shock waves and liquid jets traveling through the inclusions can erode nearby solid surfaces. The collapse of cavitation bubbles has been extensively investigated in the case of a single bubb...

متن کامل

Quantitative ultrasound method to detect and monitor laser-induced cavitation bubbles.

An ultrasound technique to measure the spatial and temporal behavior of the laser-induced cavitation bubble is introduced. The cavitation bubbles were formed in water and in gels using a nanosecond pulsed Nd:YAG laser operating at 532 nm. A focused, single-element, 25-MHz ultrasound transducer was employed both to detect the acoustic emission generated by plasma expansion and to acoustically pr...

متن کامل

Optodynamic Characterization of Laser-Induced Bubbles

Laser-induced bubbles can be caused by an optical breakdown in water. They are a result of the optodynamical process where the energy of a high intensity laser pulse is converted into the mechanical energy through an optodynamic conversion. At this process the absorbed optical energy causes plasma expansion that in turn initiates dynamic phenomena: spreading of a shock wave and the development ...

متن کامل

A dual passive cavitation detector for localized detection of lithotripsy-induced cavitation in vitro.

A passive cavitation detector (PCD) identifies cavitation events by sensing acoustic emissions generated by the collapse of bubbles. In this work, a dual passive cavitation detector (dual PCD), consisting of a pair of orthogonal confocal receivers, is described for use in shock wave lithotripsy. Cavitation events are detected by both receivers and can be localized to within 5 mm by the nature o...

متن کامل

Luminescence from cavitation bubbles deformed in uniform pressure gradients.

Presented here are observations that demonstrate how the deformation of millimetric cavitation bubbles by a uniform pressure gradient quenches single-collapse luminescence. Our innovative measurement system captures a broad luminescence spectrum (wavelength range, 300-900 nm) from the individual collapses of laser-induced bubbles in water. By varying the bubble size, driving pressure, and perce...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJMTIE

دوره 1  شماره 

صفحات  -

تاریخ انتشار 2011